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ABSTRACT

An artificial dissipation model, including boundary treatment, that 1s
employed in many central difference schemes for solving the Euler and Navier-
Stokes equations 1s discussed. Modifications of this model such as the eigen-
value scaling suggested by upwind differencing are examined. Multistage time
stepping schemes with and without a multigrid method are used to investigate
the effects of changes in the dissipation model on accuracy and convergence.
Improved accuracy for inviscid and viscous airfoll flows is obtained with the
modified eigenvalue scaling. Slower convergence rates are experienced with
the multigrid method using such scallng. The rate of convergence is improved

by applying a dissipation scaling function that depends on mesh cell aspect

ratio.
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I. INTRODUCTION

In the past few years, substantial progress has been achieved in the
development of efficient numerical schemes for solving the Euler and Navier-
Stokes equationsl-6. Robustness and accuracy of the schemes has also con-
tinued to improve. Strong emphasis has been placéd on sharp representation of
shock waves, which is reflected in the Euler solutions obtained’"10, Now, the
accuracy of viscous flow calculations (i.e., turbulent flows where there are
strong gradients) requires additional attention. For example, nonphysical
solutions have been obtained for trailing edge turbulent airfoil flowsll-14,
A major factor contributing to inaccuracies is the artificial dissipation
present in the numerical algorithms.

The schemes that are used for solving the Euler and Navier-Stokes equa-
tions are based on either central or upwind differencing. Both central and
upwind methods include artificial dissipation. A symmetric form!® for the
numerical flux function clearly reveals that upwind schemes involve a matrix
dissipation coefficient. This results in a specific scaling (based on charac-
teristic values) of the dissipation of each conservation equation. In the
case of central difference schemes, a scalar coefficient is employed for the
dissipative flux contribution to the numerical flux. This results in a
simpler scheme with a smaller operations count. For either type of dif-
ferencing, the principal requirements in the design of the dissipatiQe terms
are that they must be large enough for a satisfactory convergence rate and yet
sufficiently small that accuracy is not compromised,

In this paper, a central differencing algorithm 1is used to investigate

artificial dissipation. There are two fundamental reasons for adding dissipa-

tion terms to a central difference method. First, they are included to pro-



vide high frequency damping. It is well-known that central difference schemes
experience odd and even point decoupling for both linear and nonlinear prob-
lems. These high frequency modes must be damped to achieve satisfactory
convergence. In the case of nonlinear problems, high frequency damping is
required to remove the energy produced by nonlinear interactions (i.e., con—
sider a Fourier representation of nonlinear convection terms). Without such
damping, the unresolvable modes (subgrid frequency components) can appear as
errors in the resolvable low frequency components of the discrete solution.
Second, artificial dissipation terms are added to eliminate oscillations in
the neighborhood of shock waves. Also, from the mathematical theory for
hyperbolic systems of inviscid conservation 1aw516, the introduction of
artificial dissipation is necessary to guarantee a unique weak solution.

It is interesting to note that if sufficient resolution were used to
define a shock structure, the solution of the full Navier-Stokes equatioms
would eliminate the need for artificial dissipation at shock wavesl’. How-
ever, this would mean that the mesh spacing in the streamwise direction in the
vicinity of the shock would have to be orders of magnitude (depending on the
Reynolds number) smaller than that which is currently used in aerodynamic
computations. Furthermore, solving the complete Navier-Stokes equations
rather than a subset such as the thin-layer Navier-Stokes equations (where
diffusion terms in the streamwise-like direction are neglected) could require
much greater computer time.

In the present work, the artificial dissipation model introduced by
Jameson, Schmidt, and Turkell8 is reviewed. Then, some modifications of this

model and boundary treatment of the dissipative terms are discussed. Numeri-

cal methods used to solve the Euler and thin-layer Navier—Stokes equations are




briefly described. Next, inviscid, laminar, and turbulent airfoil flows are
considered to investigate the effects of certain modifications of the basic
dissipation model on efficiency and accuracy. Special emphasis is given to

the calculation of accurate viscous flow solutions.

II. BASIC DISSIPATION MODEL
The basic dissipation model considered in this paper was first introduced
by Jameson, Schmidt and Turkell® in conjunction with Runge-Kutta explicit
schemes. It has subsequently been used by many investigatorslg'23 in a wide
range of applications. Also, it has been applied to ADI implicit schemes2®,

In this section, this model will be briefly reviewed.

Consider the Euler equations in the form

wt+fx+gy=0 (1

where W is the solution vector of conserved variables, and f, g are the
inviscid flux vectors. The independent variables are time t and Cartesian
coordinates (x,y). Transforming Eg. (1) to arbitrary curvilinear coordi-
nates £ = £(x,y), n = n(x,y)

(J-W)t+F +Gn=0 (2)

3
where J 1is the transformation Jacobian and F = fyn - gxn, G = gxg - ny.
In a cell centered finite-volume method, Eq. (2) is simply integrated over an

elemental volume in the discretized computational domain, and J is then the



volume of the cell. Eq. (2) can also be written as

wt + AW, + Bwn =0 (3)

g
where A and B are the flux Jacobian matrices.

A typical step of a Runge-Kutta approximation to Eq. (2) is

S0 (0 1

-a, J

(k=-1) (k-1) _
At [DEF + DnG D] (4)

where Dg’ Dn are approximations to the spatial derivatives, and D are
artificial dissipation terms, which are usually frozen at the first or second
stage. The artificial dissipation employed in Ref. 18 is a blending of second

and fourth differences. That is,

2 2 4 4
= + - -D 5
D (Dg D, D, n)W (5)
where
2w = v ( . e AW, . (6)
2 £ 141/2,5 i+1/2,377g71,3°
4 (4)
= , * DAV AW, | 7
DeW = Ve Qivrr2,5 * C1e1/2,5% %% s, 57 ™
and AE’ Vg are forward and backward difference operators associated with

the § direction. The variable scaling factor

Ai+1/2’j = 1/2[(Ag)i,j + (Ag)i + (An)i’j + (2)

+1,3 n’1+1,3] (8)

where Ag is the largest eigenvalue of the matrix A, and An is the




largest eigenvalue of the matrix B, The coefficients e(z) and 5(4)

are adapted to the flow and are defined as follows:
(2) - «(2)
Sir1/2,5 T KT max vy 4 Vi 4y (9
P , = 2P + P
v _ |_it+l,3 i,] i-1,j3 (10)
. b4
i,j Pi+1,j + 2Pi,j + Pi—l,j
e (&) = max [0 &®) - (2 )] (11)
1+1/2,3 ’ 1+1/2,37°°

where P is the pressure, and typical values of the constants K(z) and
kK(4) are 1/4 and 1/256, respectively. The operators in Eq. (5) for the
n direction are defined in a similar manner.

Before proceeding, some general comments on the form of these terms are
appropriate. First, the original use of this artificial dissipation was for
the solution of the Euler equations on a grid with an aspect ratio close to
one. Second, the scaling factor A, which is given in Eq. (8), has an iso—
tropic behavior. Such a behavior is generally not satisfactory in viscous

flow calculations. Also, the eigenvalues

) _ [2 . .2
Ag = luyn vxn] tedy +x o,
(12)
_ _ [2 . .2
An = lvxg uysl +c Xg + Ye »

where u, v are Cartesian velocity components and ¢ 1s the speed of sound,
represent approximations to the flux Jacobian matrices A and B. (See Refs.

15 and 24 for the relationship between central differencing plus artificial




dissipation and upwind differencing.) Finally, in more recent versions of the
dissipation model, the maximum in Eq. (9) is taken over more mesh cells than

the immediate neighbors. This is beneficial for shock capturing capability.

II1I. MODIFICATIONS OF BASIC DISSIPATION MODEL

The second difference dissipation term given in Eq. (6) is an approxima-

tion to
29 (2) aw
where 8(2) =) e e(z). Adding this expression to the right~hand side (RHS)

of Eq. (2), multiplying the resulting equation by W, and integrating over the

domain ) gives

1/2 g— [ W2 e JdEdn = flux terms
t Q
(13)
-/ p(2) (2—‘1 % dgdn
Q 3

if boundary terms are neglected or if boundary derivatives vanish. For linear
problems, the square of the L2 norm f f W2 e Jd&dn {which in this case
is an energy estimate in the mathematical Zense) is a good measure for the
stability of the numerical scheme. Equation (13) shows that the second dif-
ference dissipation term decreases this L2 norm aund, thus, is strictly dis-
sipative. If the same type of analysis is done for the fourth difference

dissipation term of Eq. (7), then




1728~ [ [ Ww® . Jdgdn = flux terms
ot

2.2
=11 8™ A &an (14)
Q 13
(4) 2
Qg 25 gl

Both a dissipative term and a dispersive term appear on the RHS of Eq. (14).
The following term

(4)

© &y 5 VA ) W, o, (15)

b _
DEW = (VEAE) (Ai’. 5 Vehe) Wy g

]
is considered as a replacement for the one in Eq. (7). This modified term
produces only dissipative terms. Note that A and 9(4) are evaluated
at nodes rather than at mesh cell boundaries as in Eq. (7).

For Navier-Stokes problems, a fine mesh is required in the direction
normal to the body in order to resolve the boundary layer. In the interest of
computational efficiency, the mesh spacing in the streamwise direction for
high Reynolds number calculations is generally chosen so as to resolve the
streamwise inviscid terms only (i.e., thin-layer Navier—Stokes assumption).
Then the mesh in the viscous region has a high aspect ratio (with S as arc
length Asn/ASE <K 1), To make matters more difficult, the situation can be
reversed in the far field of an external flow problem. Thus, depending on the
grid generation technique ASn/ASE = 0(1) or even ASH/ASE > 1 in the
far-field region. These large distortions create difficulties both for the
convergence and for the accuracy of steady-state computations. These

difficulties are compounded for multigrid schemes since high frequency modes

are very different in the two coordinate directions.



A number of investigators have suggested that an anisotropic dissipation
model is needed for such problems. Therefore, Eq. (8) in the basic dissipa-

tion model is replaced by

A = 1/2[(Ag)i,j + (),) 1, (16)

i+1/2,5 £71+41,j

and a similar equation is used in the n direction. For a multigrid
algorithm, this scaling in the streamwise direction can be too severe. More-
over, the effectiveness of the driving scheme in damping high frequencies in
the £ direction can be significantly diminished, resulting in a much
slower convergence rate., In Ref. 25, Martinelli introduces functions of mesh
cell aspect ratio and obtains accurate solutions and good convergence rates.
For example, one can replace Eq. (16) by

Marjz,3 T V2L, 5 GY) ]

i+l,j
where
X .= . . .
(17)
_ o
¢i,j(r) =1 + ri,j 0<a <1,

and r = An/xg. In the normal direction, one defines

) D0y

nl1,3 = 1,5

This 1is only one possible function, and it should not be considered the

optimum,




Due to large velocity gradients in turbulent boundary layers, additional
scaling of the artificial dissipation is required in the direction normal to a
surface boundary. The presence of the physical viscous terms can be exploited
to allow the additional dissipation terms in the normal direction to be
reduced. 1In the present work, this is accomplished by multiplying the second
and fourth difference dissipation terms by a simple linear function of the

local Mach number. That is, the normal scaling factor becomes

* _£(M)
Aiyjerzz T2 Oy 5+ )y 4] (18)

where M = ML/M°° and ML is the local Mach number.

IV. BOUNDARY TREATMENT OF DISSIPATION TERMS

In this section, the boundary dissipation operators that are applied in
many flow prediction codes based on finite-volume discretization are pre-
sented. Then, a local mode analysis is used to examine the relative damping
characteristics of some of the difference stencils. The influence of the
boundary cell operators on the character of the dissipation matrix for the
system of flow difference equations is also discussed.

In a finite-volume method, the first and last cells in each coordinate
direction are auxiliary cells where the flow equations are not solved. The
solution in these cells is found by a combination of the given physical
boundary conditions and numerical boundary conditions (i.e., extrapolation).
Hence, there is generally no difficulty in evaluating the second difference

dissipation term at the first or last interior cell in a given coordinate
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direction. Note that at a solid surface boundary either the surface or entire
contribution to the normal-like dissipation of the first interior cell is
usually set to zero. In the case of the fourth difference dissipation term,
information is required at two neighboring cells on each side of the cell
being considered. Therefore, special treatment of this term is needed for the
first interior cell at the boundaries of the physical domain. Eriksson and
Rizz126 and Pulliam24 suggest choosing a boundary cell difference stencil that
results in a nonpositive definite dissipation matrix for the system of dif-
ference equations. As will be shown, such a choice results in a numerical
scheme that 1is more dissipative for the long wavelength components of the
solution at a boundary than in the interior of the domain. Although this may
be acceptable at a far—-field boundary of an external flow problem, caution
should be exercised in selecting the difference formula at a solid b0un&ary.
For example, in Euler calculations a large dissipation in the direction normal
to the boundary can generate a thick false entropy layer. Also, as indicated
previously, it can alter a viscous flow solution significantly.

At this point some simplifying notation is introduced to identify and
subsequently analyze some of the boundary cell treatments that are commonly
used for the fourth-difference dissipation. First, let D, E, F, and G
denote first, second, third, and fourth differences, respectively. Then, for
interior cells in a given direction

D W - W

+1/2 T Mo 2

- +
W ZWE W

B = Das172 ~ Dpci/2 T Y e-1
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Foar/2 " Bgar ~ B m Wgp = Wy + W, =W

Gy = Foprsz = Faory2 = Waao ~ Mgy F W, = 80 ) + W o

where Wl is the discrete solution for the lth celle The dissipation

stencils considered for the first interior cell (designated 2 = 2) are
generated by applying the following (see Fig. (1)):
(Al) 5i/2 = 53/2 (zeroth order extrapolation) or E& = 0,
(A2) 5i/2 = 253/2 - 53/2 (first order extrapolation) or E} = Eé. .
(43) Dy = Dyjy + Dgyy = Dyyy or E = Ej.
(A4) ﬁi/Z = 3(55/2 - ﬁs/z) + ﬁ}/z (quadratic interpolation) or
'El = -F5/2 +'35/2 —'53/2. Then, Eé = 0.

In the case of a solid surface boundary (2 = 3/2), the normal difference

operators that are generally used are constructed by setting the surface dis-

sipative flux F3/2 to zero and

(B1) Dyy = Dgyy or E,=0.
(B2) Dy, = 2D5,, = Dy/y or E, =Eg.
(B3) ?5/2 = 0, ES =0 (numerical dissipation of zero for first two

interior cells).

The treatment of (B3) has been applied successfully in both inviscid and

viscous multidimensional flow calculat:ions.ll’23
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A local mode analysis can be beneficial in examining the relative damping
behavior of boundary cell difference operators. First, for comparison
purposes, we characterize the interior fourth difference. Taking the Fourier
transform of G we obtain

L

Ez = 4(cose—1)2

where E@ is the Fourier symbol and ] is the product of a wave number

and the mesh spacing. Then,

gz ~ 64 for small 6

and

gz('ﬂ') = 160

The dissipation of long waves is dictated by the behavior of Ek at small
8, and the dissipation of short waves is governed by E&(n). The
coefficient k(%) (see Eq. (11)) is chosen so that the highest frequency is
highly damped. This 1is important for multigrid calculations. Near a
boundary, the dissipation should behave in a similar manuner.

A general form of the difference stencil at L =2 and the associated

Fourier transform symbol can be written as follows:

G = aW - BW

N o+2 £+1+(B+Y-a)W1-YW

-1
and

Ek =[B +v = 2a(1 + cos8)](l - cosd)
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+ i(y - B + 2a cos8)sind,

2 4

- ) 8
= + - -— —_—
g, B +vy 4a)2+a2

+ 1(20 - B8 + y)8 - iae3 for small 6
g, (1) = 2(8 + ).

In the case of (Al)

= - + - =
Gl W£+2 4W2+1 SW2 ZWz_l L 2,
- i0
g, = 4(1 = cosB) - 2e (1 - cos8),
Ez ~ 92 - 193 for small 6,
gz(w) =12,
Note that Ek is not real; and thus, there is both dissipation and

dispersion near the boundary. This 1s the dissipation recommended by

Pulliam?. It is second order on long waves and fairly dissipative on short

waves. The treatment of (A2) gives

= - -+ -
Gl Wl+2 3W£+1 3Wz w2~1

2(1 - cose)2 - 21isin8(1 - cos8),

o}
Py
1]
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g = 5~ i6 for small @,
E;(n) = 8.

For all waves, the Real (Ei) is half of the interior value. The dissi-
pation formula for (A3) is simply twice that of (A2). Then, the real part
of E& for all waves becomes the same as it is in the interior of the do-
main. In numerical experiments, the boundary cell treatments of (Al) - (A4)
resulted in similar solutions and convergence rates.

In Ref. 24, boundary difference stencils are evaluated by computing the
eigenvalues of the dissipation matrix for a one-dimensional discrete system
that includes a fourth difference dissipation term. Such an evaluation shows
that the damping of the highest frequency (as determined by the largest eigen-
value, say A ) by boundary treatments (Al) - (A3) is nearly the same.

max

Note that as the number of mesh points increases, the eigenvalue Amax is
dictated by the interior point stencil (for the interior gk(n) = 16). The
principal difference between using (Al) or (A2) - (A3) is indicated by the low
frequency behavior of the dissipation matrix (see also Ek(e) for small

8). The matrix associated with (A2) or (A3) has a zero eigenvalue. There-~
fore, (A2) or (A3) are not recommended since they could lead to undamped
modes. According to Refs. 26 and 24 a boundary dissipation formula is chosen
so that the dissipation matrix is nonpositive definite (i.e., strictly dissi-
pative). The dissipation treatments resulting from (Al) and (Bl) satisfy this
requirement. The results of this paper were obtained with (Al) and (Bl).

Moreover, the boundary treatment and interior representation (Eq. (15)) of the

fourth difference dissipation are consistent (i.e., strictly dissipative).
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V. NUMERICAL METHODS

The numerical results presented in this paper were computed with multi-
stage time stepping schemes. Details and properties of these schemes have
been described previouslyll. In some of the calculations, both four and five
stage Runge-Kutta algorithms were used as drivers for a multigrid process.
The multigrid technique is based on the work of Jameson.2’ 1In particular, a
Full Approximation Storage (FAS) method28 and V-type cycle are employed. The
grid transfer operators (i.e., restriction and prolongation operators) are the
same ones used in the Jameson procedure. Several modifications of the
original method have resulted in improved multigrid performance. First, the
fourth difference dissipation term is computed with Eq. (15). The normal
artificial dissipation near the wake line is treated by continuation rather
than applying the same procedure used on the airfoil surface. All boundary
information is updated after each stage and on all meshes in the multigrid
process., Finally, on each level of refinement of a Full Multigrid (FMG)
method, multiple iterations are performed on coarse grids. One iteration is
done on the finest mesh, two Runge-Kutta cycles on the next mesh, and three
Runge~Kutta cycles on all coarser meshes. In the viscous flow calculatioms, a

29 Moreover, the viscous

convective coarse grid correction scheme is used.
terms are evaluated only on the finest grid for a given level of refinement.

For further discussion of the multigrid algorithm, see Ref. 30.

VI. RESULTS AND DISCUSSION
Adequate consideration must be given to convergence as well as accuracy

in designing an artificial dissipation model. This is especially true for a
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multigrid technique. For example, good high frequency damping of the basic
solver 1s the crucial requirement for constructing an efficient multigrid pro-
cess. In the first part of this section, the effects of scaling of the
numerical dissipation are investigated by considering multigrid calculations
for inviscid and laminar flow over an airfoil. The last part deals with tran-
sonic turbulent airfoil flow, and in particular, the trailing edge flow. To
facilitate the discussion of the numerical results, the following designations

are made to indicate the form of the artificial dissipation model used:

1) Basic or original (see Section II)

2) Modified (Eq. (16)) =~ This refers to scaling with individual
eigenvalues,

3) Modified (Eq. (17)) =~ 1Individual eigenvalues are multiplied by a

function of cell aspect ratio.

For each model, Eq. (15) is used for the fourth difference dissipation term.
Finally, wherever a convergence history is presented, it shows the variation
of the logarithm of the root mean square of the residual of the continuity
equation with iteration. For the multigrid computations, an iteration

corresponds to a multigrid cycle.

Transonic Inviscid Flow

Several calculations were performed for an NACA 0012 airfoil at Mach 0.8
and an angle of attack of 1.25°, A C-type mesh with 256 cells around the air-
foil (193 points on the airfoil) and 32 cells normal to the airfoil was

used. The outer boundary was placed 12 chords away from the airfoil; a far
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field vortex boundary condition31 was applied. The computed surface pressure
distributions and convergence histories using the basic and modified (Eq.
(16)) artificial dissipation models are displayed in Figs. 2 and 3, respec—
tively. The predicted shocks on the upper and lower surfaces of the airfoil
are strongervas a result of reducing the numerical dissipation. However, the
mean convergence rate with the multigrid method deteriorates substantially.
It is .876 with the original model and .960 with the modified (Eq. (16))
model. TIf the modification of Eq. (17) is applied, the calculated pressure
distribution (Fig. 4a) is very close to that given in Fig. 3. Furthermore,
the mean convergence rate of the computation is improved significantly (a
value of .890 for 100 cycles). It should be emphasized that the function
employed in Eq. (17) for scaling the artificial dissipation is by no means
optimum. The 1lift and drag coefficients for these cases and those predicted

with the high density mesh calculations of Ref. 7 are given in Table I.

Table I

Lift and drag coefficients for NACA 0012 airfoil, M = .8, a = 1.25°

Case CL CD

Basic dissipation model «3330 .0220

Modified (Eq. 16)) dissipation «3667 .0235
model

Modified (Eq. 17)) dissipation «3567 .0234
model

Ref. 7 = 561 x 65 C-type mesh .3618 .0236
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Subsonic Laminar Flow

Numerical solutions were obtained for laminar flow past an NACA 0012 air-
foil. The Mach number was 0.5, the Reynolds number was 5000, and the angle of
attack was zero degrees. A C~type mesh with 256 x 64 cells (129 points on
the airfoil) was employed in the calculations. The normal mesh spacing at the
surface was about 6 x 10-4 chords, and the trailing edge streamwise spacing
was 5 x 10_3 chords. In Figs. 5a and 5b, the pressure and skin—-friction
distributions computed using the original dissipation model are shown. The
absence of any pressure recovery at the trailing edge indicates the presence
of strong viscous effects, Moreover, as denoted in Fig. 5b, the flow
separates at the .811 chord location. There is a sudden change in the skin
friction at the trailing edge. At least in part, this is a consequence of the
artificial dissipation model. The convergence history for this case is pre-
sented in Fig. 5c. In 300 multigrid cycles with the finest grid (requiring
less than 3 minutes on the CRAY II computer), the mean rate of convergence is
.923,

The surface skin-friction distribution calculated using the modified (Eq.
(16)) model is displayed in Fig. 6a. Now, there is a significantly smaller
decrease in the skin friction at the airfoil trailing edge. 1In the case of
the modified (Eq. (17)) model, some additional scaling (with a simple second
degree polynomial) in the streamwise direction in the immediate vicinity of
the trailing edge was required to obtain essentially the same skin-friction
solution and a good convergence rate. Figure 6b shows the convergence
histories for these cases. The mean rates of convergence using the modified

models based on Eqs. (16) and (17) are .947 and .932, respectively.
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For all these laminar flow results the second difference dissipation
terms are set to zero. In the shear layers, the normal physical viscous terms
generally dominate (are an order of magnitude or more 1larger than) the
numerical dissipation terms. However, even with the modified (Eq. (16))
model, the streamwise artificial dissipation terms are not dominated by the
normal physical ones for a few cells surrounding a trailing edge cell. For
this laminar case, the streamwise diffusion terms, which were neglected by the
thin~-layer approximation, may be of sufficient importance to allow domination
of the total physical viscous effects over the artificial ones at the trailing
edge.

The streamlines of the recirculation zone for the modified (Eq. (16))
dissipation model solution are presented in Fig. 7. The longitudinal and
lateral extents of this thin bubble are very close to those predicted with the

other models. Figure 8 shows a velocity vector plot for this laminar flow

problem.

Transonic Turbulent Flow

Nonphysical solutions for turbulent flow in the trailing edge region of
an airfoil have been observed by many investigators. The basic factors that

determine the accuracy of the trailing edge solution are as follows:

1) Mesh (resolution and orientation),
2) artificial dissipation,

3) turbulence modelling.
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In Ref. 33, Haase indicates that the principal reason for inaccurate results
is the nonalignment of the trailing-edge mesh line and streamline. Based on
the present work and Ref. 2, this is not considered to be the main cause of
inaccuracy. That is, qualitatively correct physical behavior can be obtained,
even if the trailing-edge mesh line bisects the trailing-edge angle, as long
as the artificial dissipation is sufficiently small.

The impact of the artificial dissipation terms is revealed in results for
transonic flow over an RAE 2822 airfoil. In this standard test case,33 the
free-stream Mach number is 0.73, the Reynolds number is 6.5 x 106, and the
angle of attack corrected for wind~tunnel wall effects is 2.79 degrees. The
first set of results was computed with the basic artificial dissipation model
and a C-type mesh having 264 x 100 cells. A view of the mesh and a blowup
of the trailing-edge region is shown in Fig. 9. The mesh spacing in the
normal direction at the surface is such that the first mesh point is inside
the laminar sublayer. The spacing in the x direction at the trailing edge
(Axt.e.) is 0.0147 chords. Figures 10a and 10b compare the pressure and
upper surface skin-friction distributions with experimental data. Even though
there is an adverse pressure gradient on the upper surface near the trailing
edge, the skin friction there exhibits a substantial rise, which 1s not
physically correct.

The next set of results was obtained with the basic dissipation model and
a finer trailing—edge mesh., The mesh for this case is presented in Fig. 1ll.
The spacing Axt.e. is 0.005 chords. This represents a reduction of almost
a factor of three. At the shock wave, the spacing is more than twice that for
the previous results. In Figs., 12a and 12b, the pressure and skin-friction

variations are displayed. There is still a strong skin friction rise at the

airfoil trailing edge.
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The final group of results was calculated using the modified (Eq. (16))
dissipation model and the mesh in Fig. 11. They are shown in Figs. 13a -
13d. The predicted pressures are in good agreement with experimental data,
even with the coarse grid spacing in the vicinity of the shock. As indicated
in Fig. 13b, there are two separated flow regions on the airfoil. A very
small shock induced separation bubble occurs at about 56% chord. The trailing
edge separation on the upper surface of the airfoil occurs approximately at
95% chord. The behavior of the flow in the vicinity of the trailing edge is
clearly visible in Fig. 13c. Figure 13d presents the residual and 1lift
histories for the calculation. A multigrid procedure was not employed.
Finally, 1in Table II the predicted 1lift, drag, and pitching moment

coefficients are compared with those of experiment and Ref. 3.

TABLE II

Lift, drag, and pitching moment coefficients for RAE 2822 airfoil,

M, = .73, Re_ = 6.5 x 10°, a = 2.79°

CL CD CD Cp Cy
P f

Experiment (Ref. 33) .803 - - .0168 -.099
Present (256 x 64 «829 0124 .0051 «0175 -.093
C~-type mesh)

Pulliam (Ref. 3, 248 x 51 824 0128 .0050 .0178 -.092
O-type mesh)

CD = pressure drag coefficient

P
CD = friction drag coefficient

£
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CONCLUDING REMARKS

Improved accuracy of numerical flow solutions has been achieved by
modifying a standard artificial dissipation model for central differencing
schemes. With the eigenvalue scaling suggested by upwind differencing, the
artificial dissipation in the streamwise flow direction has been reduced.
This has resulted in a better representation of inviscid transonic flows on a
given mesh. 1In addition, physically correct viscous solutions for the trail-
ing edge of an airfoil flow have been obtained. However, the modified eigen-
value scaling of the dissipation has resulted in slower convergence rates for
a multigrid method driven by a multistage time stepping scheme. Improvements
in accuracy and multigrid convergence rates have been shown possible by

modifying the scaling with a function that depends on mesh cell aspect ratio.
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Figure 1. Designation of mesh 1lines and solution points for boundary cell
treatment of artificial dissipation.
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(a) Pressure distribution.

Calculation of inviscid flow over NACA 0012 airfoil using basic

Figure 2. 5
artificial dissipation model (Mm = 0.8, a = 1.257).
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(a) Pressure distribution.

Figure 3. Calculation of inviscid flow over NACA 0012 airfoil using modified
(Mm = 0.8, a = 1.25).

(Eq. (16)) artificial dissipation model
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(a) Pressure distribution.

Calculation of inviscid flow over NACA 0012 airfoil using modified

Figure 4. d
(Eq. (17)) artificial dissipation model (M = 0.8, a = 1.25 ).
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(a) Pressure distribution.

Figure 5. Calculation of 1laminar flow over NACA 0012 airfoil using basic
artificial dissipation model (M_ = 0.8, Re = 5000, a = 07).
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(a) Skin-friction distribution.

Figure 6. Calculations of laminar flow over NACA 0012 airfoil using mgdified
artificial dissipation models M_ = 0.5, Re_ = 5000, o = 07).
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A - Modified EEq. 21633 model

B - Modified
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Figure 7. Particle pathlines for 1amin8r flow over NACA 0012 airfoil
(&” = 0.5, Re_ = 5000, o = 0).
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Figure 9a. Partial view of mesh (264 x 100 cells) for RAE 2822 airfoil.
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Figure 9b.
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(a) Pressure distribution.

Figure 10. Calculation of turbulent flow over RAE 2822 airfoil with basic

6
artificigl dissipation model (M _ = 0.73, Re_ = 6.5 x 10",
a = 2,797).
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(b) Upper surface skin-friction
distribution.
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Figure lla. Partial view of mesh (256 x 64 cells) for RAE 2822 airfoil; mesh
refinement at trailing edge.
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Figure 11b.

Blowup of mesh in trailing edge region.
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(a) Pressure distribution.

Figure 12. Calculation of turbulent flow over RAE 2822 airfoil with basic
artificial dissipation model ang mesh refinement at trailing
edge  (M_ = 0.73, Re_ = 6.5 x 10°, a = 2.79°).
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(b) Upper surface skin-friction
distribution.
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(a) Pressure distribution.

Figure 13. Calculation of turbulent flow over RAE 2822 airfoil with modified
(Eq. 16)) artificial dissipation model %Pd mesh refinement at
trailing edge M_ = 0.73, Re = 6.5x 10", a = 2.79%).
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